Linux驱动学习开发(一)

本系列基于正点原子的驱动开发系列视频

Linux 中的三大类驱动:字符设备驱动、块设备驱动和网络设备驱动。其中字符设备驱动是占用篇幅最大的一类驱动,因为字符设备最多,从最简单的点灯到 I2C、SPI、音频等都属于字符设备驱动的类型。块设备和网络设备驱动要比字符设备驱动复杂,就是因为其复杂所以半导体厂商一般都给我们编写了,大多数情况下都是直接可以使用的。所谓的块设备驱动就是存储器设备的驱动,比如 EMMC、NAND、SD 卡和 U 盘等存储设备,因为这些存储设备的特点是以存储块为基础,因此叫块设备。网络设备驱动就更好理解了,就是网络驱动,不管是有线的还是无线的,都属于网络设备驱动的范畴。一个设备可以属于多种设备驱动类型,比如 USB WIFI,其使用 USB 接口,所以属于字符设备,但是其又能上网,所以也属于网络设备驱动。

字符设备驱动

简介

字符设备是 Linux 驱动中最基本的一类设备驱动,字符设备就是一个一个字节,按照字节流进行读写操作的设备,读写数据是分先后顺序的。比如我们最常见的点灯、按键、IIC、SPI, LCD 等等都是字符设备,这些设备的驱动就叫做字符设备驱动。

Linux 下的应用程序是调用驱动程序流程图

调用流程图

open函数调用流程

open函数

linux内核驱动函数

应用程序使用到的函数在具体驱动程序中都有与之对应的函数,比如应用程序中调用了 open 这个函数,那么在驱动程序中也得有一个名为 open 的函数。每一个系统调用,在驱动中都有与之对应的一个驱动函数。文件操作结构体如下:

struct file_operations {
	struct module *owner;
	loff_t (*llseek) (struct file *, loff_t, int);
	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
	ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
	ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
	int (*iterate) (struct file *, struct dir_context *);
	unsigned int (*poll) (struct file *, struct poll_table_struct *);
	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
	int (*mmap) (struct file *, struct vm_area_struct *);
	int (*mremap)(struct file *, struct vm_area_struct *);
	int (*open) (struct inode *, struct file *);
	int (*flush) (struct file *, fl_owner_t id);
	int (*release) (struct inode *, struct file *);
	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
	int (*aio_fsync) (struct kiocb *, int datasync);
	int (*fasync) (int, struct file *, int);
	int (*lock) (struct file *, int, struct file_lock *);
	ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
	int (*check_flags)(int);
	int (*flock) (struct file *, int, struct file_lock *);
	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
	int (*setlease)(struct file *, long, struct file_lock **, void **);
	long (*fallocate)(struct file *file, int mode, loff_t offset,
			  loff_t len);
	void (*show_fdinfo)(struct seq_file *m, struct file *f);
#ifndef CONFIG_MMU
	unsigned (*mmap_capabilities)(struct file *);
#endif
};

owner 拥有该结构体的模块的指针,一般设置为 THIS_MODULE。

llseek 函数用于修改文件当前的读写位置。

read 函数用于读取设备文件。

write 函数用于向设备文件写入(发送)数据。

poll 是个轮询函数,用于查询设备是否可以进行非阻塞的读写。

unlocked_ioctl 函数提供对于设备的控制功能,与应用程序中的 ioctl 函数对应。

compat_ioctl 函数与 unlocked_ioctl 函数功能一样,区别在于在 64 位系统上,32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是unlocked_ioctl。

mmap 函数用于将将设备的内存映射到进程空间中(也就是用户空间),一般帧缓冲设备会使用此函数,比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,这样就不用在用户空间和内核空间之间来回复制。

open 函数用于打开设备文件。

release 函数用于释放(关闭)设备文件,与应用程序中的 close 函数对应。

fasync 函数用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘中。

aio_fsync 函数与 fasync 函数的功能类似,只是 aio_fsync 是异步刷新待处理的数据。

驱动开发步骤

在 Linux 驱动开发中肯定也是要初始化相应的外设寄存器,这个是毫无疑问的。只是在 Linux 驱动开发中我们需要按照其规定的框架来编写驱动,所以说学 Linux 驱动开发重点是学习其驱动框架。

驱动模块的加载和卸载

​ Linux 驱动有两种运行方式,第一种就是将驱动编译进 Linux 内核中,这样当 Linux 内核启动的时候就会自动运行驱动程序。第二种就是将驱动编译成模块(Linux 下模块扩展名为.ko),在Linux 内核启动以后使用“insmod”命令加载驱动模块。在调试驱动的时候一般都选择将其编译为模块,这样我们修改驱动以后只需要编译一下驱动代码即可,不需要编译整个 Linux 代码。而且在调试的时候只需要加载或者卸载驱动模块即可,不需要重启整个系统。总之,将驱动编译为模块最大的好处就是方便开发。

模块有加载和卸载两种操作,我们在编写驱动的时候需要注册这两种操作函数,模块的加载和卸载注册函数如下:

module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数

module_init 函数用来向 Linux 内核注册一个模块加载函数,参数 xxx_init 就是需要注册的具体函数,当使用“insmod”命令加载驱动的时候,xxx_init 这个函数就会被调用。module_exit()函数用来向 Linux 内核注册一个模块卸载函数,参数 xxx_exit 就是需要注册的具体函数,当使用“rmmod”命令卸载具体驱动的时候 xxx_exit 函数就会被调用。

初始化函数和退出函数模板如下:

//修饰不可少
static int __init led_init(void);
static int __exit led_exit(void);

module_init(led_init);
module_exit(led_exit);

驱动编译完成以后扩展名为.ko,有两种命令可以加载驱动模块:insmod和 modprobe,insmod是最简单的模块加载命令,此命令用于加载指定的.ko 模块,比如加载 drv.ko 这个驱动模块,命令如下:

insmod drv.ko

insmod 命令不能解决模块的依赖关系,比如 drv.ko 依赖 first.ko 这个模块,就必须先使用insmod 命令加载 first.ko 这个模块,然后再加载 drv.ko 这个模块。但是 modprobe 就不会存在这个问题,modprobe 会分析模块的依赖关系,然后会将所有的依赖模块都加载到内核中,因此modprobe 命令相比 insmod 要智能一些。modprobe 命令主要智能在提供了模块的依赖性分析、错误检查、错误报告等功能,推荐使用 modprobe 命令来加载驱动

modprobe 命令默认会去/lib/modules/(kernel-version)目录中查找模块,比如本书使用的 Linux kernel 的版本号为 4.1.15,因此 modprobe 命令默认会到/lib/modules/4.1.15 这个目录中查找相应的驱动模块,一般自己制作的根文件系统中是不会有这个目录的,所以需要自己手动创建。

驱动模块的卸载使用命令“rmmod”即可,比如要卸载 drv.ko,使用如下命令即可:

rmmod drv.ko

也可以使用“modprobe -r”命令卸载驱动,比如要卸载 drv.ko,命令如下:

modprobe -r drv.ko

使用 modprobe 命令可以卸载掉驱动模块所依赖的其他模块,前提是这些依赖模块已经没有被其他模块所使用,否则就不能使用 modprobe 来卸载驱动模块。所以对于模块的卸载,还是推荐使用 rmmod 命令。

字符设备注册与注销

字符设备的注册和注销函数原型如下所示:

static inline int register_chrdev(unsigned int major, const char *name,const struct file_operations *fops);
static inline void unregister_chrdev(unsigned int major, const char *name);

register_chrdev 函数用于注册字符设备,此函数一共有三个参数,这三个参数的含义如下:

major:主设备号,Linux 下每个设备都有一个设备号,设备号分为主设备号和次设备号两部分。

name:设备名字,指向一串字符串。

fops:结构体 file_operations 类型指针,指向设备的操作函数集合变量。

unregister_chrdev 函数用户注销字符设备,此函数有两个参数,这两个参数含义如下:

major:要注销的设备对应的主设备号。

name:要注销的设备对应的设备名。

一般字符设备的注册在驱动模块的入口函数 xxx_init 中进行,字符设备的注销在驱动模块的出口函数 xxx_exit 中进行

实现设备的具体操作函数

file_operations 结构体就是设备的具体操作函数。

但是需要对其进行初始化。也就是初始化其中的open、release、read 和 write 等具体的设备操作函数。

static int chrtest_open(struct inode *inode, struct file *filp)  
{  
    /* 用户实现具体功能 */
	return 0; 
}  

static ssize_t chrtest_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
	/* 用户实现具体功能 */
    return 0;
}

static ssize_t chrtest_write(struct file *filp,const char __user *buf,size_t cnt, loff_t *offt)
{
    /* 用户实现具体功能 */
	return 0;
}

static int chrtest_release(struct inode *inode, struct file *filp)
{
/* 用户实现具体功能 */
	return 0;
}

static struct file_operations test_fops = {
	.owner = THIS_MODULE, 
    .open = chrtest_open,
	.read = chrtest_read,
 	.write = chrtest_write,
 	.release = chrtest_release,
};

/* 驱动入口函数 */
static int __init xxx_init(void)
{
	/* 入口函数具体内容 */
	int retvalue = 0;
	/* 注册字符设备驱动 */
	retvalue = register_chrdev(200, "chrtest", &test_fops);
	if(retvalue < 0){
		/* 字符设备注册失败,自行处理 */
	}
	return 0;
}

/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
	/* 注销字符设备驱动 */
	unregister_chrdev(200, "chrtest");
}

/* 将上面两个函数指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);

THIS_MODULE是什么?

添加 LICENSE 和作者信息

需要在驱动中加入 LICENSE 信息和作者信息,其中 LICENSE 是必须添加的,否则的话编译的时候会报错,作者信息可以添加也可以不添加。LICENSE 和作者信息的添加使用如下两个函数

MODULE_LICENSE() //添加模块 LICENSE 信息
MODULE_AUTHOR() //添加模块作者信息

设备号

为了方便管理,Linux 中每个设备都有一个设备号,设备号由主设备号和次设备号两部分组成,主设备号表示某一个具体的驱动,次设备号表示使用这个驱动的各个设备。Linux 提供了一个名为 dev_t 的数据类型表示设备号。

typedef __u32 __kernel_dev_t;
typedef __kernel_dev_t dev_t;
typedef unsigned int __u32;

这 32 位的数据构成了主设备号和次设备号两部分,其中高 12 位为主设备号,低 20 位为次设备号。因此 Linux系统中主设备号范围为 0~4095。

//宏 MINORBITS 表示次设备号位数,一共是 20 位。
#define MINORBITS 20
//宏 MINORMASK 表示次设备号掩码。
#define MINORMASK ((1U << MINORBITS) - 1) 
//宏 MAJOR 用于从 dev_t 中获取主设备号,将 dev_t 右移 20 位即可。
#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
//宏 MINOR 用于从 dev_t 中获取次设备号,取 dev_t 的低 20 位的值即可
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
//宏 MKDEV 用于将给定的主设备号和次设备号的值组合成 dev_t 类型的设备号
#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))

设备号分配

静态分配

注册字符设备的时候需要给设备指定一个设备号,这个设备号可以是驱动开发者静态的指定一个设备号,比如选择 200 这个主设备号。有一些常用的设备号已经被 Linux 内核开发者给分配掉了

通过下列命令查看已经使用的设备号

cat /proc/devices

动态分配

Linux 社区推荐使用动态分配设备号,在注册字符设备之前先申请一个设备号,系统会自动给你一个没有被使用的设备号,这样就避免了冲突。卸载驱动的时候释放掉这个设备号即可,设备号的申请函数如下:

int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name);

dev:保存申请到的设备号。

baseminor:次设备号起始地址,alloc_chrdev_region 可以申请一段连续的多个设备号,这些设备号的主设备号一样,但是次设备号不同,次设备号以 baseminor 为起始地址地址开始递增。一般 baseminor 为 0,也就是说次设备号从 0 开始。

count:要申请的设备号数量。

name:设备名字

注销字符设备之后要释放掉设备号,设备号释放函数如下:

void unregister_chrdev_region(dev_t from, unsigned count);

from:要释放的设备号。

count:表示从 from 开始,要释放的设备号数量

程序解析

驱动层

chrdevbase_open

参数 filp 有个叫做 private_data 的成员变量,private_data 是个 void 指针,一般在驱动中将private_data 指向设备结构体,设备结构体会存放设备的一些属性

chrdevbase_read

参数 buf 是用户空间的内存,读取到的数据存储在 buf 中,参数 cnt 是要读取的字节数,参数 offt 是相对于文件首地址的偏移。

因为内核空间不能直接操作用户空间的内存,因此需要借助 copy_to_user 函数来完成内核空间的数据到用户空间的复制

chrdevbase_write

参数 buf 就是应用程序要写入设备的数据,也是用户空间的内存,参数 cnt 是要写入的数据长度,参数 offt 是相对文件首地址的偏移。

通过函数 copy_from_user 将 buf 中的数据复制到写缓冲区 writebuf 中,因为用户空间内存不能直接访问内核空间的内存,所以需要借助函数 copy_from_user 将用户空间的数据复制到 writebuf 这个内核空间中

chrdevbase_release

般会在此函数里面执行一些释放操作。如果在 open 函数中设置了 filp 的 private_data成员变量指向设备结构体,那么在 release 函数最终就要释放掉。

应用层


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!